职称:特聘教授 | ||||||
办公室:南京市江宁区秣周东路9号无线谷A3号楼3楼 | ||||||
办公电话:025-52091653转301分机 | ||||||
Email: hmwang AT seu.edu.cn | ||||||
学习经历: | ||||||
2004–2009,博士, ,通信与信息系统专业 1999–2002,硕士,东南大学无线电工程系,电磁场与微波技术专业 1994–1999,学士,东南大学无线电工程系,电子信息工程专业 | ||||||
工作经历: | ||||||
2002年4月至今, /毫米波全国重点实验室 | ||||||
学术兼职: | ||||||
1. 2019年11月至今,国家6G技术研发总体专家组,专家 2. 2022年07月至今,中国通信学会短距无线通信委员会,副主任委员 3. 2012年09月至2018年07月,IEEE 802.11aj国际标准工作组,副主席 | ||||||
研究方向: | ||||||
1. 天线射频+人工智能(iART, AI-Powered Antenna and Radiofrequency Technologies) 2. 信道测量与建模+人工智能(iCHAMM, AI-Powered Channel Measurement and Modeling Technologies) 3. 通信感知定位一体化+人工智能(iCSAP, AI-Powered Integrated Communications, Sensing, and Positioning Technologies) | ||||||
课程教学: | ||||||
1. 计算机组织与架构(双语),本科生 2. 综合课程设计(数字信号处理组),本科生 3. 毫米波无线通信,博士研究生 | ||||||
获奖情况: | ||||||
1. 2021年,江苏省科技进步奖一等奖(第5),“移动通信测试技术研究与仪器研发及产业化应用” 2. 2020年,IEEE 802.11aj国际标准突出贡献证书,IEEE标准协会 3. 2018年,IEEE 802.11aj国际标准杰出贡献证书,IEEE标准协会 4. 2018年,IEEE AP-S SPC Honorable Mention(学生最佳论文荣誉奖),指导教师 5. 2017年,第十五届“挑战杯”全国大学生课外学术科技作品竞赛二等奖,指导教师 6. 2017年,第十五届“挑战杯”全国竞赛江苏省选拔赛一等奖,指导教师 7. 2016年,江苏省“六大人才高峰”高层次人才称号 8. 2015年,IEEE MAPE 2015最佳论文奖,指导教师 9. 2009年,江苏省科技进步奖一等奖(第3),“宽带移动通信射频、天线与分集技术” | ||||||
代表性著作和书章: | ||||||
[1] 王海明, 无奇. 智能微波工程[M]. 北京: 科学出版社, 2023. [2] Q. Wu, H. M. Wang, and W. Hong, “Machine learning-assisted optimization and its application to antenna and array designs,” in Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning, John Wiley & Sons, Inc., pp.371-383, DOI: https://doi.org/10.1002/9781119853923.ch12, Aug. 2023. [3] P. Z. Zhang, C. Yi, and H. M. Wang, “Millimetre-wave radio propagation measurements towards 5G NR standardisations,” in Metrology for 5G and Emerging Wireless Technologies, T. H. Loh, Eds. London: IET, 2021. [4] P. Z. Zhang, C. Yi, and H. M. Wang, “5G wireless testbeds,”in Wiley 5G REF, R. Tafazolli, C. L. Wang, and P. Chatzimisios, Eds. New York: Wiley, DOI: https://doi.org/10.1002/9781119471509.w5GRef063, May 2020. [5] Q. Wu, H. M. Wang, and W. Hong, “Millimeter-wave antenna designs,” in Wiley 5G REF, R. Tafazolli, C. L. Wang, and P. Chatzimisios, Eds. New York: Wiley, DOI: 10.1002/9781119471509.w5GRef053, Oct. 2019. | ||||||
代表性论文: | ||||||
[1] M. Wang, Y. P. He, H. M. Wang*, C.-X. Wang, and X. H. You, “A pervasively correlated channel model for massive MIMO transmission,” IEEE Trans. Commun., Accepted, Dec. 2023. [2] W. Q. Chen, Q. Wu, J. H. Wei, C. Yu, H. M. Wang*, and W. Hong, “Knowledge-guided and machine learning-assisted synthesis for series-fed microstrip antenna arrays using base element modeling,” IEEE Trans. Antennas Propag., Accepted, Dec. 2023. [3] M. Cheng, Q. Wu, C. Yu, H. M. Wang*, and W. Hong, “Synthesis of a thinned prephased electronically steered phased array using excitation control of both the small amplitude dynamic range ratio and low-resolution phase,” IEEE Trans. Antennas Propag., Early Access, DOI: 10.1109/TAP.2023.3330344, Nov. 2023. [4] S. Y. Shao, S. W. Zhang, N. Hu, X. D. Xu, M. Fan, Y. Li, J. J. Chen, and H. M. Wang*, “Joint passing-object detection using a mixture of the first Fresnel zone maximum and phase difference and its application to WLAN sensing,” IEEE Internet Things J., Early Access, DOI: 10.1109/JIOT.2023.3307155, Aug. 2023. [5] J. H. Wei, W. Q. Chen, Y. J. Gong, Q. Wu, G. Y. Lu, W. Gao, L. H. Wang, M. Li M, and H. M. Wang*, “Highly efficient automatic synthesis of a millimeter-wave on-chip deformable spiral inductor using a hybrid knowledge-guided and data-driven technique,” IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., vol. 42, no. 12, pp. 4413-4422, Dec. 2023. [6] Y. Zhu, J. Ma, Y. M. Yu, S. T. Gao, and H. M. Wang*, “Deep learning-based cluster delay estimation using prior sparsity,”IEEE Wireless Commun. Lett., vol. 12, no. 11, pp. 1936-1940, Nov. 2023. [7] M. Cheng, Q. Wu, C. Yu, H. M. Wang, and W. Hong, “A prephased electronically steered phased array that uses very-low-resolution phase shifters and a hybrid phasing method,” IEEE Trans. Antennas Propag., vol. 71, no. 9. pp. 7310-7322, July 2023. [9] Q. Wu, W. Q. Chen, C. Yu, H. M. Wang, and W. Hong, “Knowledge-guided active base element modeling in machine learning-assisted antenna array design,” IEEE Trans. Antennas Propag., vol. 71, no. 2, pp. 1578-1589, Feb. 2023. [10] J. X. Yin, Q. Wu, H. M. Wang, and Z. N. Chen, “Prephase-based equivalent amplitude tailoring for low sidelobe levels of 1-bit phase-only control metasurface under plane wave incidence,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp. 10604–10613, Nov. 2022. [11] B. Y. Han, Q. Wu, C. Yu, H. M. Wang, X. Q. Gao, and N. Ma, “Ultracompact dual-polarized cross-dipole antenna for a 5G base station array with a low wind load,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 9315–9325, Oct. 2022. [12] S. Y. Shao, M. Fan, C. Yu, Y. Li, X. D. Xu, and H.M. Wang, “Machine learning-assisted sensing techniques for integrated communications and sensing in WLANs: Current status and future directions,” Prog. Electromagn. Res., vol. 175, 45–79, Aug. 2022. [13] W. Q. Chen, Q. Wu, C. Yu, H. M. Wang, and W. Hong, “Multibranch machine learning-assisted optimization and its application to antenna design,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 4985–4996, Jul. 2022. [14] Q. Wu, W. Q. Chen, C. Yu, H. M. Wang, and W. Hong, “Machine learning-assisted array synthesis using active base element modeling,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5054–5065, Jul. 2022. [15] C. Liu, B. Yang, P. Z. Zhang, H. M. Wang, C.-X. Wang, and X. H. You, “Multiple angles of arrival estimation using broadband signals and a nonuniform planar array,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4093-4106, June 2022. [16] P. Z. Zhang, C. Yi, B. S. Yang, H. M. Wang, C. Oestges, and X. H. You, “Predictive modeling of millimeter-wave vegetation scattering effect using hybrid physics-based and data-driven approach,” IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 4056-4068, June 2022. [17] C. Yi, P. Z. Zhang, H. M. Wang, and W. Hong, “Multipath similarity index measure across multiple frequency bands,” IEEE Wireless Commun. Lett., vol. 10, no. 8, 1677–1681, Aug. 2021. [18] Q. Wu, W. Q. Chen, Y. Chen, H. M. Wang, and W. Hong, “Multilayer machine learning-assisted optimization-based robust design and its applications to antennas and arrays,” IEEE Trans. Antennas Propag.,vol. 69, no. 9, pp. 6052–6057, Sept. 2021. [19] J. X. Yin, Q. Lou, H. M. Wang, Z. N. Chen, and W. Hong, “Broadband dual-polarized single-layer reflectarray antenna with independently controllable 1-bit dual beams,” IEEE Trans. Antennas Propag., vol. 69, no. 6, pp. 3294-3314, June 2021. [20] B. S. Yang, P. Z. Zhang, H. M. Wang, C.-X. Wang, and X. H. You, “Broadband extended array response-based subspace multiparameter estimation method for multipolarized wireless channel measurements,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3298-3312, May 2021. [21] P. Z. Zhang, H. M. Wang, and W. Hong, “Radio propagation measurement and cluster-based analysis for millimeter-wave cellular systems in dense urban environments,” Front. Inform. Technol. Elect. Eng., vol. 22, no. 4, pp. 471-487, Apr. 2021. [22] P. Z. Zhang, C. Yi, B. S. Yang, C. X. Wang, H. M. Wang, and X. H. You, “In-building coverage of millimeter-wave wireless networks from channel measurement and modeling perspectives,” Sci. China Inf. Sci., vol. 63, no. 8, 180301, Aug. 2020. [23] J. X. Yin, Q. Wu, Q. Lou, H. M. Wang, Z. N. Chen, and W. Hong, “Single-beam 1-bit reflective metasurface using pre-phased unit cells for normally incident plane waves,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5496-5504, July 2020. [24] P. Z. Zhang, B. S. Yang, C. Yi, H. M. Wang, and X. H. You, “Measurement-based 5G millimeter-wave propagation characterization in vegetated suburban macrocell environments,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5556-5567, July 2020. [25] Q. Wu, H. M. Wang, and W. Hong, “Multi-stage collaborative machine learning and its application to antenna modeling and optimization,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3397-3409, May 2020. [26] Q. Wu, Y. Cao, H. M. Wang, and W. Hong, “Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges,” China Commun., vol. 17, no. 4, pp. 152-164, Apr. 2020. [27] B. S. Yang, P. Z. Zhang, H. M. Wang, and W. Hong, “Electromagnetic vector antenna array based multi-dimensional parameter estimation for radio propagation measurement,” IEEE Wireless Commun. Lett.,vol. 8, no. 6, pp. 1608-1611, Dec. 2019. [28] J. X. Yin, Q. Wu, C. Yu, H. M. Wang, and W. Hong, “Broadband endfire magneto-electric dipole antenna array using SICL feeding network for 5G millimeter-wave applications,”IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4895-4900, July 2019. [29] J. X. Yin, Q. Wu, C. Yu, H. M. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications,”IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4474-4483, July 2019. [30] H. M. Wang, P. Z. Zhang, J. Li, and X. H. You, “Radio propagation and wireless coverage of LSAA-based 5G millimeter-wave mobile communication systems,” China Commun., vol. 16, no. 5, pp. 1-18, May 2019. [31] Q. Wu, J. X. Yin, C. Yu, H. M. Wang, and W. Hong, “Broadband planar SIW cavity-backed slot antennas aided by unbalanced shorting vias,”IEEE Antennas Wireless Propag. Lett., vol. 18, no. 2, 363-367, Feb. 2019. [32] P. Z. Zhang, J. Li, H. B. Wang, H. M. Wang, “Indoor small-scale spatiotemporal propagation characteristics at multiple millimeter-wave bands,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 12, pp. 2250-2254, 2018. [33] Q. Wu, J. Hirokawa, J. X. Yin, C. Yu, H. M. Wang, and W. Hong, “Millimeter-wave multibeam endfire dual circularly polarized antenna array for 5G wireless applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp.4930-4935, 2018. [34] Q. Wu, H. M. Wang, C. Yu, and W. Hong, “Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna,”IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7310-7315, 2017. [35] Q. Wu, J. Hirokawa, J. X. Yin, C. Yu, H. M. Wang, and W. Hong, “Millimeter-wave planar broadband circularly polarized antenna array using stacked curl elements,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 7052-7062, 2017. [36] J. X. Yin, Q. Wu, C. Yu, H. M. Wang, and W. Hong, “Low-sidelobe-level series-fed microstrip antenna array of unequal interelement spacing,” IEEE Antennas Wireless Propag. Lett., vol. 16, no. 1, pp. 1695-1698, 2017. [37] X. Y. Xia, Q. Wu, H. M. Wang, C. Yu, and W. Hong, “Wideband millimeter-wave microstrip reflectarray using dual-resonance unit cells,” IEEE Antennas Wireless Propag. Lett., vol. 16, no. 1, pp. 4-7, 2017. [38] Q. Wu, H. M. Wang, C. Yu, and W. Hong, “Low-profile circularly polarized cavity-backed antennas using SIW techniques,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2832-2839, 2016. [39] H. M. Wang, Z. M. Deng, X. Q. Gao, and X. H. You, “Optimization and efficient detection of primary synchronization signal for multi-beam satellite-LTE systems,” Int J Satell Commun Network, vol. 34, no. 2, pp. 115-129, 2016. [40] J. Zhu, H. M. Wang, and W. Hong, “Large-scale fading characteristics of indoor channel at 45-GHz band,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 735-738, 2015. [41] Q. Wu, H. M. Wang, C. Yu, X. W. Zhang, and W. Hong, “L/S-band dual circularly polarized antenna fed by 3-dB coupler,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 426-429, 2015. [42] H. M. Wang, W. Hong, J. X. Chen, B. Sun, and X. M. Peng, “IEEE 802.11aj (45GHz): A new very high throughput millimeter-wave WLAN system,” China Commun., vol. 11, no. 6, pp. 51-62, 2014. [43] H. M. Wang, X. Q. Gao, B. Jiang, X. H. You, W. Hong, “Efficient MIMO channel estimation using complementary sequences,” IET Commun., vol. 1, no. 5, pp. 962-969, Oct. 2007. | ||||||
科研项目: | ||||||
项目名称 | 项目类别 | 项目时间 | 工作 | |||
面向代工厂的EDA基础构件 | 国家重点研发计划项目 | 2023/12-2026/11 | 负责 | |||
通信感知一体化的多频段多极化信道建模理论方法 | 国家自然科学基金委面上项目 | 2023/01–2026/12 | 负责 | |||
非对称毫米波亚毫米波大规模MIMO信道测量与建模 | 国家重点研发计划课题 | 2020/07-2023/06 | 负责 | |||
毫米波多用户大规模MIMO信道估计理论方法研究 | 国家自然科学基金委面上项目 | 2017/01–2020/12 | 负责 | |||
5G Q波段通信技术方案和试验系统研发 | 国家科技重大专项课题 | 2016/01–2018/12 | 负责 | |||
毫米波超高速无线局域网关键技术研发 | 江苏省重点研发计划项目 | 2015/06–2018/05 | 负责 | |||
多变参数无线传播环境模型及建模方法 | 国家973计划子课题 | 2013/01–2017/08 | 负责 | |||
面向地下轨道交通的无线信道模型构建与应用 | 国家自然科学基金委重点基金子课题 | 2012/01–2016/12 | 负责 | |||
卫星移动通信网应用基础 | 江苏省重点基金项目 | 2011/07–2014/07 | 负责 | |||
毫米波超大容量室内局域无线接入技术研究 | 国家863计划课题 | 2015/01–2016/12 | 参与 | |||
电波测量与信道建模技术研究 | 国家科技重大专项课题 | 2009/01–2010/12 | 参与 | |||
室内通信感知一体化技术研究 | 企业合作项目 | 2022/09-2023/12 | 负责 | |||
面向规划的毫米波&太赫兹波传播测量与信道建模技术研究 | 企业合作项目 | 2021/08-2023/07 | 负责 | |||
6G移动通信智能信道测量与建模 | 企业合作项目 | 2022/02-2024/02 | 负责 | |||
Sub100GHz跨频段信道特征挖掘 | 企业合作项目 | 2021/09-2022/09 | 负责 | |||
机器学习驱动的无源器件设计及高速ESD保护应用 | 企业合作项目 | 2021/12-2022/12 | 负责 | |||
毫米波连续覆盖可行性研究 | 企业合作项目 | 2020/11-2021/10 | 负责 | |||
低风阻超大规模阵列天线设计 | 企业合作项目 | 2019/10-2021/10 | 负责 | |||
机器学习辅助快速容差分析技术 | 企业合作项目 | 2019/10-2020/10 | 负责 | |||
天线设计自动化技术 | 企业合作项目 | 2018/11–2019/11 | 负责 | |||
毫米波车载雷达技术 | 企业合作项目 | 2018/04–2019/03 | 负责 | |||
低轨卫星系统QV频段多波束技术研究 | 中国空间技术研究院 | 2017/12–2018/12 | 负责 | |||
高低频传播及多径测量技术 | 企业合作项目 | 2017/11–2018/11 | 负责 | |||
移动通信高频段(6GHz以上)信道测量与建模技术研究 | 工业和信息化部电信研究院 | 2017/01–2017/06 | 负责 | |||
车载雷达天线与阵列信号处理算法合作研究 | 企业合作项目 | 2016/10–2017/09 | 负责 | |||
车载FCW雷达天线与信号处理算法合作开发 | 企业合作项目 | 2015/06–2016/03 | 负责 | |||
基于频域信道探测的毫米波无线信道测量与信道建模技术研究 | 企业合作项目 | 2015/04–2017/03 | 负责 | |||
Impacts of RF Impairments on 3GPP–LTE | 企业合作项目 | 2008/04–2009/03 | 负责 | |||
代表性专利: | ||||||
专利名称 | 专利号 | 专利类型 | ||||
Low-profile broadband circularly-polarized array antenna using stacked travelling wave antenna elements | US11069965B2 | 美国发明专利 | ||||
Main synchronization sequence design method for global covering multi-beam satellite LTE | US9609607B2 | 美国发明专利 | ||||
Pilot frequency position determining method based on pilot frequency interval optimization, and transceiver device | US10038533B2 | 美国发明专利 | ||||
Parametric generating method for ZCZ sequence set | US10116362B2 | 美国发明专利 | ||||
Signalling Field of Wireless MIMO Communication System and Communication Method Thereof | EP3151497B1 | 欧盟发明专利 | ||||
Time domain pilot of single-carrier MIMO system and synchronization method thereof | US10334605B2 | 美国发明专利 | ||||
Methods and devices for transmission/reception of data for hybrid carrier modulation MIMO system | US10291458B2 | 美国发明专利 | ||||
Sequence with a low PAPR design method for wireless communication system | US10313171B2 | 美国发明专利 | ||||
Method and apparatus for supporting low bit rate coding, and computer storage medium | US10574264B2 | 美国发明专利 | ||||
获得最大平均信道容量的4发4收天线阵列尺寸优化方法 | ZL 201210051385.5 | 中国发明专利 | ||||
获得最大平均信道容量的4发2收天线阵列尺寸优化方法 | ZL 201210050565.1 | 中国发明专利 | ||||
一种低峰均比的多天线导频优化和低复杂度发送方法 | ZL 201210040423.7 | 中国发明专利 | ||||
一种提高无线信道测量的定时同步精度的方法 | ZL 201210050564.7 | 中国发明专利 | ||||
一种全域覆盖多波束卫星LTE的主同步序列设计方法 | ZL 201310119936.1 | 中国发明专利 | ||||
通信系统中多相正交互补序列集合的生成方法 | ZL 201310294151.8 | 中国发明专利 | ||||
无线局域网中的分布式时隙分配干扰协调方法 | ZL 201310279832.7 | 中国发明专利 | ||||
一种全域覆盖多波束卫星LTE的下行发射端定时调整方法 | ZL 201310335775.X | 中国发明专利 | ||||
全域覆盖多波束卫星LTE的辅助同步信道传输方法 | ZL 201410031899.3 | 中国发明专利 | ||||
一种适用于无线局域网的2.4/5GHz双频全向天线 | ZL 201410064487.X | 中国发明专利 | ||||
一种采用基片集成同轴线馈电的双频双圆极化天线 | ZL 201410156074.4 | 中国发明专利 | ||||
一种多路基片集成波导功分器 | ZL 201410340506.7 | 中国发明专利 | ||||
一种采用基片集成同轴线技术的紧凑型双频枝节线耦合器 | ZL 201410342931.X | 中国发明专利 | ||||
一种多路基片集成波导滤波功分器 | ZL 201410340391.1 | 中国发明专利 | ||||
一种基片集成同轴线的尺寸设计方法 | ZL 201410782853.5 | 中国发明专利 | ||||
一种采用双谐振相移单元的宽带反射阵天线 | ZL 201510581818.1 | 中国发明专利 | ||||
一种采用基片集成波导的背腔缝隙圆极化天线 | ZL 201610078340.5 | 中国发明专利 | ||||
一种采用半模基片集成波导的背腔缝隙圆极化天线 | ZL 201610080271.1 | 中国发明专利 | ||||
一种基于基片集成波导的背腔缝隙双频圆极化天线 | ZL 201611184431.3 | 中国发明专利 | ||||
一种非均匀阵元间距的低副瓣电平串馈微带天线 | ZL 201610880562.9 | 中国发明专利 | ||||
一种采用堆叠行波天线单元的低剖面宽带圆极化阵列天线 | ZL 201710583689.9 | 中国发明专利 | ||||
一种低剖面方向图可重构基片集成波导喇叭天线 | ZL 201710583687.X | 中国发明专利 | ||||
一种ZCZ序列集合的参数化生成方法 | ZL 201410465443.8 | 中国发明专利 | ||||
一种交织法生成的ZCZ序列集合的快速周期相关方法 | ZL 201410810696.4 | 中国发明专利 | ||||
一种基于ZCZ序列的MIMO前导序列生成方法及接收装置 | ZL 201410699785.6 | 中国发明专利 | ||||
一种ZCZ序列集合的快速周期相关方法 | ZL 201410593285.4 | 中国发明专利 |