王海明

发布者:何万源发布时间:2018-04-23浏览次数:22001

职称:特聘教授

办公室:南京市江宁区秣周东路9号无线谷A3号楼3

办公电话:025-52091653301分机

Email: hmwang AT seu.edu.cn

学习经历:

2004–2009,博士, ,通信与信息系统专业

1999–2002,硕士,东南大学无线电工程系,电磁场与微波技术专业

1994–1999,学士,东南大学无线电工程系,电子信息工程专业

工作经历:

20024月至今, /毫米波全国重点实验室

学术兼职:

1.          201911月至今,国家6G技术研发总体专家组,专家

2.          202207月至今,中国通信学会短距无线通信委员会,副主任委员

3.          201209月至201807月,IEEE 802.11aj国际标准工作组,副主席

研究方向:

1.          天线射频+人工智能(iART, AI-Powered Antenna and Radiofrequency Technologies

2.          信道测量与建模+人工智能(iCHAMM, AI-Powered Channel Measurement and Modeling Technologies

3.          通信感知定位一体化+人工智能(iCSAP, AI-Powered Integrated Communications, Sensing, and Positioning   Technologies

课程教学:

1.          计算机组织与架构(双语),本科生

2.          综合课程设计(数字信号处理组),本科生

3.          毫米波无线通信,博士研究生

获奖情况:

1.          2021年,江苏省科技进步奖一等奖(第5),“移动通信测试技术研究与仪器研发及产业化应用”

2.          2020年,IEEE 802.11aj国际标准突出贡献证书,IEEE标准协会

3.          2018年,IEEE 802.11aj国际标准杰出贡献证书IEEE标准协会

4.          2018年,IEEE AP-S SPC Honorable Mention(学生最佳论文荣誉奖),指导教师

5.          2017年,第十五届挑战杯全国大学生课外学术科技作品竞赛二等奖,指导教师

6.          2017年,第十五届挑战杯全国竞赛江苏省选拔赛一等奖,指导教师

7.          2016年,江苏省六大人才高峰高层次人才称号

8.          2015年,IEEE MAPE 2015最佳论文奖,指导教师

9.          2009年,江苏省科技进步奖一等奖(第3),宽带移动通信射频、天线与分集技术

代表性著作和书章:

[1]      王海明, 无奇. 智能微波工程[M]. 北京: 科学出版社, 2023.

[2]      Q. Wu, H. M. Wang, and W. Hong, “Machine learning-assisted   optimization and its application to antenna and array designs,” in Advances   in Electromagnetics Empowered by Artificial Intelligence and Deep Learning,   John Wiley & Sons, Inc., pp.371-383, DOI: https://doi.org/10.1002/9781119853923.ch12,   Aug. 2023.

[3]      P. Z. Zhang, C. Yi, and H. M. Wang, “Millimetre-wave radio propagation measurements   towards 5G NR standardisations,” in Metrology   for 5G and Emerging Wireless Technologies, T. H. Loh, Eds. London: IET,   2021.

[4]      P. Z. Zhang, C. Yi, and H. M. Wang, “5G wireless testbeds,”in Wiley 5G   REF, R. Tafazolli, C. L. Wang, and P. Chatzimisios, Eds. New York: Wiley,   DOI: https://doi.org/10.1002/9781119471509.w5GRef063, May 2020.

[5]      Q. Wu, H.   M. Wang, and W. Hong, “Millimeter-wave antenna designs,” in Wiley 5G REF, R. Tafazolli, C. L.   Wang, and P. Chatzimisios, Eds. New York: Wiley, DOI:   10.1002/9781119471509.w5GRef053, Oct. 2019.

代表性论文:

[1]         M. Wang, Y. P. He, H. M.   Wang*, C.-X. Wang, and X. H. You, “A pervasively correlated channel model   for massive MIMO transmission,” IEEE Trans. Commun., Accepted,   Dec. 2023.

[2]         W. Q. Chen, Q. Wu, J. H. Wei,   C. Yu, H. M. Wang*, and W. Hong, “Knowledge-guided and machine   learning-assisted synthesis for series-fed microstrip antenna arrays using   base element modeling,” IEEE Trans. Antennas Propag., Accepted,   Dec. 2023.

[3]         M. Cheng, Q. Wu, C. Yu, H. M. Wang*, and W.   Hong, “Synthesis of a thinned prephased electronically steered phased   array using excitation control of both the small amplitude dynamic range   ratio and low-resolution phase,” IEEE Trans. Antennas Propag.,   Early Access, DOI: 10.1109/TAP.2023.3330344, Nov. 2023.

[4]         S. Y. Shao, S. W. Zhang,   N. Hu, X. D. Xu, M. Fan, Y. Li, J. J. Chen, and H. M. Wang*,   “Joint passing-object detection using a mixture of the first Fresnel zone   maximum and phase difference and its application to WLAN sensing,” IEEE Internet Things J.,   Early Access, DOI: 10.1109/JIOT.2023.3307155, Aug. 2023.

[5]         J. H. Wei, W. Q. Chen, Y. J. Gong, Q. Wu, G. Y.   Lu, W. Gao, L. H. Wang, M. Li M, and H.   M. Wang*, “Highly efficient automatic synthesis of a   millimeter-wave on-chip deformable spiral inductor using a hybrid   knowledge-guided and data-driven technique,” IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., vol. 42, no. 12, pp.   4413-4422, Dec. 2023.

[6]         Y. Zhu, J. Ma, Y. M. Yu, S. T. Gao, and   H. M. Wang*, “Deep learning-based cluster delay estimation   using prior sparsity,”IEEE Wireless Commun. Lett., vol. 12, no. 11, pp. 1936-1940,   Nov. 2023.

[7]         M. Cheng, Q. Wu, C. Yu, H. M. Wang, and W.   Hong, “A prephased electronically steered phased array that uses   very-low-resolution phase shifters and a hybrid phasing method,” IEEE Trans.   Antennas Propag., vol. 71, no. 9. pp. 7310-7322, July 2023.

[8]         B. S. Yang, W. H. Wu, D. X. Yang, H. M. Wang*,   and X. H. You, “Nonuniform array-based integrated MIMO communication and   positioning in wireless local area networks,” IEEE Internet Things J.,   vol. 10, no. 6, pp. 4937-4951, Mar. 2023.

[9]         Q. Wu, W. Q. Chen, C. Yu, H.   M. Wang, and W. Hong, “Knowledge-guided active base   element modeling in machine learning-assisted antenna array design,” IEEE Trans. Antennas Propag., vol. 71, no. 2, pp.   1578-1589, Feb. 2023.

[10]     J. X. Yin, Q. Wu, H.   M. Wang, and Z. N. Chen, “Prephase-based equivalent   amplitude tailoring for low sidelobe levels of 1-bit phase-only control   metasurface under plane wave incidence,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp.   10604–10613, Nov. 2022.

[11]     B. Y. Han, Q. Wu, C. Yu, H.   M. Wang, X. Q. Gao, and N. Ma, “Ultracompact   dual-polarized cross-dipole antenna for a 5G base station array with a low   wind load,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp.   9315–9325, Oct. 2022.

[12]     S. Y. Shao, M. Fan, C. Yu, Y. Li, X. D. Xu, and H.M.   Wang, “Machine learning-assisted sensing techniques   for integrated communications and sensing in WLANs: Current status and future   directions,” Prog. Electromagn. Res., vol. 175, 45–79, Aug. 2022.

[13]     W. Q. Chen, Q. Wu, C. Yu, H.   M. Wang, and W. Hong, “Multibranch machine   learning-assisted optimization and its application to antenna design,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp.   4985–4996, Jul. 2022.

[14]     Q. Wu, W. Q. Chen, C. Yu, H. M. Wang, and   W. Hong, “Machine learning-assisted array synthesis using active base element   modeling,” IEEE Trans. Antennas   Propag., vol. 70, no. 7, pp. 5054–5065, Jul. 2022.

[15]     C. Liu, B. Yang, P. Z.   Zhang, H. M. Wang, C.-X. Wang, and X. H. You, “Multiple angles   of arrival estimation using broadband signals and a nonuniform planar array,”   IEEE Trans. Commun.,   vol. 70, no. 6, pp. 4093-4106, June 2022.

[16]     P. Z. Zhang, C. Yi, B. S. Yang, H. M. Wang,   C. Oestges, and X. H. You, “Predictive modeling of millimeter-wave vegetation   scattering effect using hybrid physics-based and data-driven approach,” IEEE Trans. Antennas Propag., vol.   70, no. 6, pp. 4056-4068, June 2022.

[17]     C. Yi, P. Z. Zhang, H.   M. Wang, and W. Hong, “Multipath similarity index measure across multiple   frequency bands,” IEEE Wireless   Commun. Lett., vol. 10, no. 8, 1677–1681, Aug. 2021.

[18]     Q. Wu, W. Q. Chen, Y.   Chen, H. M. Wang, and W. Hong, “Multilayer machine learning-assisted   optimization-based robust design and its applications to antennas and   arrays,” IEEE Trans. Antennas   Propag.,vol.   69, no. 9, pp. 6052–6057, Sept. 2021.

[19]     J. X. Yin, Q. Lou, H.   M. Wang, Z. N. Chen, and W. Hong, “Broadband dual-polarized single-layer   reflectarray antenna with independently controllable 1-bit dual beams,” IEEE Trans. Antennas Propag., vol.   69, no. 6, pp. 3294-3314, June 2021.

[20]     B. S. Yang, P. Z. Zhang, H.   M. Wang, C.-X. Wang, and X. H. You, “Broadband extended array   response-based subspace multiparameter estimation method for multipolarized   wireless channel measurements,” IEEE   Trans. Commun., vol. 69, no. 5, pp. 3298-3312, May 2021.

[21]     P. Z. Zhang, H. M. Wang,   and W. Hong, “Radio propagation measurement and cluster-based analysis for   millimeter-wave cellular systems in dense urban environments,” Front. Inform. Technol. Elect. Eng.,   vol. 22, no. 4, pp. 471-487, Apr. 2021.

[22]     P. Z. Zhang, C. Yi, B. S.   Yang, C. X. Wang, H. M. Wang, and X. H. You, “In-building coverage of   millimeter-wave wireless networks from channel measurement and modeling   perspectives,” Sci. China Inf. Sci.,   vol. 63, no. 8, 180301, Aug. 2020.

[23]     J. X. Yin, Q. Wu, Q. Lou, H.   M. Wang, Z. N. Chen, and W. Hong, “Single-beam 1-bit reflective   metasurface using pre-phased unit cells for normally incident plane waves,” IEEE Trans. Antennas Propag., vol.   68, no. 7, pp. 5496-5504, July 2020.

[24]     P. Z. Zhang, B. S. Yang,   C. Yi, H. M. Wang, and X. H. You, “Measurement-based 5G millimeter-wave   propagation characterization in vegetated suburban macrocell environments,” IEEE Trans. Antennas Propag.,   vol. 68, no. 7, pp.   5556-5567, July 2020.

[25]     Q. Wu, H. M. Wang,   and W. Hong, “Multi-stage collaborative machine learning and its application   to antenna modeling and optimization,” IEEE   Trans. Antennas Propag., vol. 68, no. 5, pp. 3397-3409, May 2020.

[26]     Q. Wu, Y. Cao, H. M.   Wang, and W. Hong, “Machine-learning-assisted optimization and its   application to antenna designs: Opportunities and challenges,” China Commun., vol. 17, no. 4, pp.   152-164, Apr. 2020.

[27]     B. S. Yang, P. Z. Zhang, H.   M. Wang, and W. Hong, “Electromagnetic vector antenna array based   multi-dimensional parameter estimation for radio propagation measurement,” IEEE Wireless Commun. Lett.,vol. 8, no. 6, pp. 1608-1611, Dec. 2019.

[28]     J. X. Yin, Q. Wu, C. Yu, H.   M. Wang, and W. Hong, “Broadband endfire magneto-electric dipole antenna   array using SICL feeding network for 5G millimeter-wave applications,”IEEE Trans. Antennas Propag.,   vol. 67, no. 7, pp. 4895-4900, July 2019.

[29]     J. X. Yin, Q. Wu, C. Yu, H.   M. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with   multimode resonance for 5G millimeter-wave applications,”IEEE Trans. Antennas Propag., vol. 67, no. 7, pp.   4474-4483, July 2019.

[30]     H. M. Wang,   P. Z. Zhang, J. Li, and X. H. You, “Radio propagation and wireless coverage   of LSAA-based 5G millimeter-wave mobile communication systems,” China Commun., vol. 16, no. 5, pp.   1-18, May 2019.

[31]     Q. Wu, J. X. Yin, C. Yu, H.   M. Wang, and W. Hong, “Broadband planar SIW cavity-backed slot antennas   aided by unbalanced shorting vias,”IEEE   Antennas Wireless Propag. Lett., vol. 18, no. 2, 363-367, Feb. 2019.

[32]     P. Z. Zhang, J. Li, H. B.   Wang, H. M. Wang, “Indoor small-scale spatiotemporal propagation   characteristics at multiple millimeter-wave bands,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 12, pp.   2250-2254, 2018.

[33]     Q. Wu, J. Hirokawa, J. X.   Yin, C. Yu, H. M. Wang, and W. Hong, “Millimeter-wave multibeam   endfire dual circularly polarized antenna array for 5G wireless   applications,” IEEE Trans. Antennas   Propag., vol. 66, no. 9, pp.4930-4935, 2018.

[34]     Q. Wu, H. M. Wang,   C. Yu, and W. Hong, “Low-profile millimeter-wave SIW cavity-backed dual-band circularly   polarized antenna,”IEEE Trans.   Antennas Propag., vol. 65, no. 12, pp. 7310-7315, 2017.

[35]     Q. Wu, J. Hirokawa, J. X.   Yin, C. Yu, H. M. Wang, and W. Hong, “Millimeter-wave planar broadband   circularly polarized antenna array using stacked curl elements,” IEEE Trans. Antennas Propag., vol.   65, no. 12, pp. 7052-7062, 2017.

[36]     J. X. Yin, Q. Wu, C. Yu, H.   M. Wang, and W. Hong, “Low-sidelobe-level series-fed microstrip antenna   array of unequal interelement spacing,” IEEE Antennas Wireless Propag. Lett., vol. 16, no. 1, pp.   1695-1698, 2017.

[37]     X. Y. Xia, Q. Wu, H. M.   Wang, C. Yu, and W. Hong, “Wideband millimeter-wave microstrip   reflectarray using dual-resonance unit cells,” IEEE Antennas Wireless Propag. Lett.,   vol. 16, no. 1, pp. 4-7, 2017.

[38]     Q. Wu, H. M. Wang,   C. Yu, and W. Hong, “Low-profile circularly polarized cavity-backed antennas   using SIW techniques,” IEEE Trans.   Antennas Propag., vol. 64, no. 7, pp. 2832-2839, 2016.

[39]     H. M. Wang,   Z. M. Deng, X. Q. Gao, and X. H. You, “Optimization and efficient detection   of primary synchronization signal for multi-beam satellite-LTE systems,” Int J Satell Commun Network, vol.   34, no. 2, pp. 115-129, 2016.

[40]     J. Zhu, H. M. Wang,   and W. Hong, “Large-scale fading characteristics of indoor channel at 45-GHz   band,” IEEE Antennas Wireless   Propag. Lett., vol. 14, pp. 735-738, 2015.

[41]     Q. Wu, H. M. Wang,   C. Yu, X. W. Zhang, and W. Hong, “L/S-band dual circularly polarized antenna   fed by 3-dB coupler,” IEEE Antennas   Wireless Propag. Lett., vol. 14, pp. 426-429, 2015.

[42]     H. M. Wang,   W. Hong, J. X. Chen, B. Sun, and X. M. Peng, “IEEE 802.11aj (45GHz): A new   very high throughput millimeter-wave WLAN system,” China Commun., vol.   11, no. 6, pp. 51-62, 2014.

[43]     H. M. Wang,   X. Q. Gao, B. Jiang, X. H. You, W. Hong, “Efficient MIMO channel estimation   using complementary sequences,” IET   Commun., vol. 1, no. 5, pp. 962-969, Oct. 2007.

科研项目:

项目名称

项目类别

项目时间

工作
类别

面向代工厂的EDA基础构件

国家重点研发计划项目

2023/12-2026/11

负责

通信感知一体化的多频段多极化信道建模理论方法

国家自然科学基金委面上项目

2023/012026/12

负责

非对称毫米波亚毫米波大规模MIMO信道测量与建模

国家重点研发计划课题

2020/07-2023/06

负责

毫米波多用户大规模MIMO信道估计理论方法研究

国家自然科学基金委面上项目

2017/012020/12

负责

5G Q波段通信技术方案和试验系统研发

国家科技重大专项课题

2016/012018/12

负责

毫米波超高速无线局域网关键技术研发

江苏省重点研发计划项目

2015/062018/05

负责

多变参数无线传播环境模型及建模方法

国家973计划子课题

2013/012017/08

负责

面向地下轨道交通的无线信道模型构建与应用

国家自然科学基金委重点基金子课题

2012/01–2016/12

负责

卫星移动通信网应用基础

江苏省重点基金项目

2011/07–2014/07

负责

毫米波超大容量室内局域无线接入技术研究

国家863计划课题

2015/01–2016/12

参与

电波测量与信道建模技术研究

国家科技重大专项课题

2009/01–2010/12

参与

室内通信感知一体化技术研究

企业合作项目

2022/09-2023/12

负责

面向规划的毫米波&太赫兹波传播测量与信道建模技术研究

企业合作项目

2021/08-2023/07

负责

6G移动通信智能信道测量与建模

企业合作项目

2022/02-2024/02

负责

Sub100GHz跨频段信道特征挖掘

企业合作项目

2021/09-2022/09

负责

机器学习驱动的无源器件设计及高速ESD保护应用

企业合作项目

2021/12-2022/12

负责

毫米波连续覆盖可行性研究

企业合作项目

2020/11-2021/10

负责

低风阻超大规模阵列天线设计

企业合作项目

2019/10-2021/10

负责

机器学习辅助快速容差分析技术

企业合作项目

2019/10-2020/10

负责

天线设计自动化技术

企业合作项目

2018/11–2019/11

负责

毫米波车载雷达技术

企业合作项目

2018/04–2019/03

负责

低轨卫星系统QV频段多波束技术研究

中国空间技术研究院

2017/12–2018/12

负责

高低频传播及多径测量技术

企业合作项目

2017/11–2018/11

负责

移动通信高频段(6GHz以上)信道测量与建模技术研究

工业和信息化部电信研究院

2017/01–2017/06

负责

车载雷达天线与阵列信号处理算法合作研究

企业合作项目

2016/10–2017/09

负责

车载FCW雷达天线与信号处理算法合作开发

企业合作项目

2015/06–2016/03

负责

基于频域信道探测的毫米波无线信道测量与信道建模技术研究

企业合作项目

2015/04–2017/03

负责

Impacts of RF Impairments on 3GPP–LTE

企业合作项目

2008/04–2009/03

负责

代表性专利:

专利名称

专利号

专利类型

Low-profile broadband circularly-polarized array antenna using stacked   travelling wave antenna elements

US11069965B2

美国发明专利

Main synchronization sequence design method for global covering   multi-beam satellite LTE

US9609607B2

美国发明专利

Pilot   frequency position determining method based on pilot frequency interval   optimization, and transceiver device

US10038533B2

美国发明专利

Parametric   generating method for ZCZ sequence set

US10116362B2

美国发明专利

Signalling   Field of Wireless MIMO Communication System and Communication Method Thereof

EP3151497B1

欧盟发明专利

Time   domain pilot of single-carrier MIMO system and synchronization method thereof

US10334605B2

美国发明专利

Methods   and devices for transmission/reception of data for hybrid carrier modulation   MIMO system

US10291458B2

美国发明专利

Sequence   with a low PAPR design method for wireless communication system

US10313171B2

美国发明专利

Method   and apparatus for supporting low bit rate coding, and computer storage medium

US10574264B2

美国发明专利

获得最大平均信道容量的44收天线阵列尺寸优化方法

ZL   201210051385.5

中国发明专利

获得最大平均信道容量的42收天线阵列尺寸优化方法

ZL   201210050565.1

中国发明专利

一种低峰均比的多天线导频优化和低复杂度发送方法

ZL   201210040423.7

中国发明专利

一种提高无线信道测量的定时同步精度的方法

ZL   201210050564.7

中国发明专利

一种全域覆盖多波束卫星LTE的主同步序列设计方法

ZL   201310119936.1

中国发明专利

通信系统中多相正交互补序列集合的生成方法

ZL   201310294151.8

中国发明专利

无线局域网中的分布式时隙分配干扰协调方法

ZL   201310279832.7

中国发明专利

一种全域覆盖多波束卫星LTE的下行发射端定时调整方法

ZL   201310335775.X

中国发明专利

全域覆盖多波束卫星LTE的辅助同步信道传输方法

ZL   201410031899.3

中国发明专利

一种适用于无线局域网的2.4/5GHz双频全向天线

ZL   201410064487.X

中国发明专利

一种采用基片集成同轴线馈电的双频双圆极化天线

ZL   201410156074.4

中国发明专利

一种多路基片集成波导功分器

ZL   201410340506.7

中国发明专利

一种采用基片集成同轴线技术的紧凑型双频枝节线耦合器

ZL   201410342931.X

中国发明专利

一种多路基片集成波导滤波功分器

ZL   201410340391.1

中国发明专利

一种基片集成同轴线的尺寸设计方法

ZL   201410782853.5

中国发明专利

一种采用双谐振相移单元的宽带反射阵天线

ZL   201510581818.1

中国发明专利

一种采用基片集成波导的背腔缝隙圆极化天线

ZL   201610078340.5

中国发明专利

一种采用半模基片集成波导的背腔缝隙圆极化天线

ZL   201610080271.1

中国发明专利

一种基于基片集成波导的背腔缝隙双频圆极化天线

ZL   201611184431.3

中国发明专利

一种非均匀阵元间距的低副瓣电平串馈微带天线

ZL   201610880562.9

中国发明专利

一种采用堆叠行波天线单元的低剖面宽带圆极化阵列天线

ZL   201710583689.9

中国发明专利

一种低剖面方向图可重构基片集成波导喇叭天线

ZL   201710583687.X

中国发明专利

一种ZCZ序列集合的参数化生成方法

ZL   201410465443.8

中国发明专利

一种交织法生成的ZCZ序列集合的快速周期相关方法

ZL   201410810696.4

中国发明专利

一种基于ZCZ序列的MIMO前导序列生成方法及接收装置

ZL   201410699785.6

中国发明专利

一种ZCZ序列集合的快速周期相关方法

ZL   201410593285.4

中国发明专利


Baidu
map