东南大学 移动通信国家重点实验室 博士、教授、博士生导师
王闻今,2011年于东南大学通信与信息系统专业获工学博士学位,后受英国EPSRC资助在英国雷丁大学做博士后研究,现为东南大学移动通信国家重点实验室教授。研究方向为:
1)未来移动通信和宽带低轨卫星通信系统关键技术研究与算法设计;
2)基于无线大数据与机器学习的无线通信理论与技术;
3)移动通信试验平台研发与关键算法实验验证。
近年来主持十余项国家重点研发项目课题、国家自然科学基金项目、国家863计划项目、国家科技重大专项课题等国家级项目,以及十余项与中国移动、中国航天科技、中国电子科技、国家电网等行业领先企业的合作课题。累计发表学术论文100余篇,其中IEEE Trans等权威期刊60余篇。申请国家发明专利100余项,其中获得授权50余项。于2009年获得教育部技术发明奖一等奖,2022年获江苏省科学技术奖一等奖,2023年获中国通信学会科技进步奖一等奖。
所指导学生在国际权威期刊及会议上发表论文多篇,多次完成国家级SRTP项目,以及获得省/校优秀硕士学位论文、国家奖学金、优秀毕业生、挑战杯竞赛等奖励与荣誉。
欢迎对相关研究领域感兴趣的同学联系攻读博士、硕士学位。欢迎优秀本科同学加入课题组参与科研训练。
电子邮箱:wangwj@seu.edu.cn
近年来主持科研项目
国家重点研发计划项目,与5G/6G融合的卫星通信技术研究与原理验证(课题)
国家重点研发计划项目,面向手机直连的天地融合宽带网络架构及关键技术(课题)
国家自然科学基金,密集分布式无线网络系统中高能效MIMO传输及迭代接收技术研究
国家自然科学基金,面向未来移动通信的大规模分层贝叶斯推断理论方法
国家自然科学基金,面向6G的毫米波大规模免调度传输理论方法
国家自然科学基金,基于无线通信大数据的传输理论与技术(子课题)
国家自然科学基金,广域通信网络弹性适变理论与技术(子课题)
国家863计划项目,超高吞吐率5G软基站试验平台研究开发(子课题)
国家科技重大专项,增强移动宽带5G关键技术验证系统概念样机研发(子课题)
江苏省基础研究计划项目,天地融合大规模随机接入理论与技术(子课题)
企业合作课题,AI空口关键技术研究与验证
企业合作课题,星地融合组网及资源分配关键技术研究
企业合作课题,基于AI的下行算法设计
企业合作课题,空口对偶架构的高性能低复杂度预编码联合设计
企业合作课题,面向6G大规模接入关键传输技术研究
企业合作课题,基于波束的大规模接入关键技术研究
企业合作课题,探统一体组网通信设备
企业合作课题,卫星互联网接入网用户链路设计及仿真
企业合作课题,用户链路建模及仿真技术研究
企业合作课题,低轨卫星宽带终端初始接入同步技术
二、期刊论文
[1]Y. Huang, L. You, C. G. Tsinos, W. Wang and X. Gao. QoS-aware precoding in downlink massive MIMO LEO satellite communications. IEEE Communications Letters, 27(6): 1560-1564, Jun. 2023.
[2]X. Liu, W. Wang, X. Gong, X. Fu, X. Gao and X. -G. Xia. Structured hybrid message passing based channel estimation for massive MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 72(6): 7491-7507, Jun. 2023.
[3]H. Jiang, L. You, A. Elzanaty, J. Wang, W. Wang, X. Gao, M.-S. Alouini. Rate-splitting multiple access for uplink massive MIMO with electromagnetic exposure constraints. IEEE Journal on Selected Areas in Communications, 41(5): 1383-1397, May 2023.
[4]X. Xiao, L. You, J. Wang, W. Wang and X. Gao. Multigroup multicast beamforming for high throughput GEO satellite communications under power-consumption outage constraints. IEEE Communications Letters, 27(3): 941-945, Mar. 2023.
[5]L. You, Y. Huang, W. Zhong, W. Wang, X. Gao. Robust online energy efficiency optimization for distributed multi-cell massive MIMO networks. Science China - Information Sciences, 66(3): 132302, Mar. 2023.
[6]T. Fang, Y. Gao, C. Suo, G. Sun, P. Chen, W. Xiao, W. Wang. A multi-beam XL-MIMO testbed based on hybrid CPU-FPGA architecture. Electronics. 12(2): 380, Jan. 2023.
[7]S. Wu, G. Sun, Y. Wang, L. You, W. Wang, R. Ding. Low-complexity user scheduling for LEO satellite communications. IET Communications, 17(12): 1368-1383, Jul. 2023.
[8]H. Jiang, L. You, J. Wang, W. Wang and X. Gao. Hybrid RIS and DMA assisted multiuser MIMO uplink transmission with electromagnetic exposure constraints. IEEE Journal of Selected Topics in Signal Processing, 16(5): 1055-1069, Aug. 2022.
[9]Y. Zhu, G. Sun, W. Wang, L. You, F. Wei, L. Wang, and Y. Chen. OFDM-based massive grant-free transmission over frequency-selective fading channels. IEEE Transactions on Communications, 70(7): 4543-4558, Jul. 2022.
[10]Y. Wang, W. Wang, L. You, C. G. Tsinos and S. Jin. Weighted MMSE precoding for constructive interference region. IEEE Wireless Communications Letters, 11(12): 2605-2609, Dec. 2022.
[11]B. Jiang, Y. Yan, L. You, J. Wang, W. Wang and X. Gao. Robust secure transmission for satellite communications. IEEE Transactions on Aerospace and Electronic Systems, 59(2): 1598-1612, Apr. 2022.
[12]Y. Liu, Y. Wang, J. Wang, L. You, W. Wang and X. Gao. Robust downlink precoding for LEO satellite systems with per-antenna power constraints. IEEE Transactions on Vehicular Technology, 71(10): 10694-10711, Oct. 2022.
[13]X. Song, S. Ma, P. Neuhaus, W. Wang, X. Gao and G. Fettweis. On robust millimeter wave line-of-sight MIMO communications with few-bit ADCs. IEEE Transactions on Wireless Communications, 21(12): 11164-11178, Dec. 2022.
[14]L. Li, T. Chen, W. Wang, X. Song, L. You and X. Gao. LoS MIMO transmission for LEO satellite communication systems. China Communications, 19(10): 180-193, Oct. 2022.
[15]L. You, J. Xu, G. C. Alexandropoulos, J. Wang, W. Wang and X. Gao. Energy efficiency maximization of massive MIMO communications with dynamic metasurface antennas. IEEE Transactions on Wireless Communications, 22(1): 393-407, Jan. 2022.
[16]C. Wu, Y. Zhu, W. Wang, C. -X. Wang and X. Gao. Improvement of the cluster-level spatial consistency of channel simulator with reference points transition method. IEEE Transactions on Vehicular Technology, 71(6): 5867-5879, Jun. 2022.
[17]H. Jiang, L. You, W. Wang and X. Gao. Multiuser MIMO uplink transmission with electromagnetic exposure constraints: Spectral efficiency and energy efficiency tradeoff. IEEE Communications Letters, 26(5): 1096-1100, May 2022.
[18]Y. Wang, J. Shi, W. Wang, et al. A deep learning-based low complexity approach for joint transceiver beamforming. IET Communications, 16(1): 14-28, 2022.
[19]L. You, X. Qiang, K.-X. Li, C. G. Tsinos, W. Wang, X. Gao, B. Ottersten. Hybrid analog/digital precoding for downlink massive MIMO LEO satellite communications. IEEE Transactions on Wireless Communications, 21(8): 5962-5976, Aug. 2022.
[20]G. Sun, Y. Li, X. Yi, W. Wang, X. Gao, L. Wang, F. Wei, and Y. Chen. Massive grant-free OFDMA with timing and frequency offsets. IEEE Transactions on Wireless Communications, 21(5): 3365-3380, May 2022.
[21]D. Zhang, X. Song, W. Wang, G. Fettweis, and X. Gao. Unifying message passing algorithms under the framework of constrained bethe free energy minimization. IEEE Transactions on Wireless Communications, 20(7): 4144-4158, Jul. 2021,
[22]H. Yu, L. You, W. Wang, and X. Yi. Active channel sparsification for uplink massive MIMO with uniform planar array. IEEE Transactions on Wireless Communications, 20(9): 6018-6032, Sep. 2021.
[23]L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and X. Gao. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission. IEEE Transactions on Signal Processing, 69: 1407-1421, Dec. 2021.
[24]L. You, J. Xiong, Y. Huang, D. W. K. Ng, C. Pan, W. Wang, and X. Gao. Reconfigurable intelligent surfaces-assisted multiuser MIMO uplink transmission with partial CSI. IEEE Transactions on Wireless Communications, 20(9): 5613-5627, Sep. 2021.
[25]L. You, Y. Huang, D. Zhang, Z. Chang, W. Wang, and X. Gao. Energy efficiency optimization for multi-cell massive MIMO: centralized and distributed power allocation algorithms. IEEE Transactions on Communications, 69(8): 5228-5242, Aug. 2021.
[26]C. Wu, X. Yi, Y. Zhu, W. Wang, L. You, and X. Gao. Channel prediction in high-mobility massive MIMO: from spatio-temporal autoregression to deep learning. IEEE Journal on Selected Areas in Communications, 39(7): 1915-1930, Jul. 2021.
[27]C. Wu, X. Yi, W. Wang, L. You, Q. Huang, X. Gao, and Q. Liu. Learning to localize: A 3D CNN approach to user positioning in massive MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 20(7): 4556-4570, Jul. 2021.
[28]W. Wang, L. Gao, R. Ding, J. Lei, L. You, C. A. Chan, and X. Gao. Resource efficiency optimization for robust beamforming in multi-beam satellite communications. IEEE Transactions on Vehicular Technology, 70(7): 6958-6968, Jul. 2021.
[29]W. Wang, T. Chen, R. Ding, G. Seco-Granados, L. You, and X. Gao. Location-based timing advance estimation for 5G integrated LEO satellite communications. IEEE Transactions on Vehicular Technology, 70(6): 6002-6017, Jun. 2021.
[30]J. Shi, W. Wang, X. Yi, J. Wang, X. Gao, Q. Liu, and G. Y. Li. Learning to compute ergodic rate for multi-cell scheduling in massive MIMO. IEEE Transactions on Wireless Communications, 20(2): 785-797, Feb. 2021.
[31]J. Shi, W. Wang, X. Yi, X. Gao, and G. Y. Li. Deep learning-based robust precoding for massive MIMO. IEEE Transactions on Communications, 69(11): 7429-7443, Nov. 2021.
[32]D. Shi, W. Wang, L. You, X. Song, Y. Hong, X. Gao, and G. Fettweis. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler. IEEE Transactions on Wireless Communications, 20(11): 7151-7165, Nov. 2021.
[33]X. Meng, L. Zhang, C. Wang, L. Wang, Y. Wu, Y. Chen, and W. Wang. Advanced NOMA receivers from a unified variational inference perspective. IEEE Journal on Selected Areas in Communications, 39(4): 934-948, Apr. 2021.
[34]X. Liu, W. Wang, X. Song, X. Gao, and G. Fettweis. Sparse channel estimation via hierarchical hybrid message passing for massive MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 20(11): 7118-7134, Nov. 2021.
[35]L. You, J. Xiong, A. Zappone, W. Wang, and X. Gao. Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Transactions on Signal Processing, 68: 2645-2659, Apr. 2020.
[36]L. You, J. Xiong, X. Yi, J. Wang, W. Wang, and X. Gao. Energy efficiency optimization for downlink massive MIMO with statistical CSIT. IEEE Transactions on Wireless Communications, 19(4): 2684-2698, Apr. 2020.
[37]L. You, M. Xiao, X. Song, Y. Liu, W. Wang, X. Gao, and G. Fettweis. Pilot reuse for vehicle-to-vehicle underlay massive MIMO transmission. IEEE Transactions on Vehicular Technology, 69(5): 5693-5697, May, 2020.
[38]L. You, X. Chen, X. Song, F. Jiang, W. Wang, X. Gao, and G. Fettweis. Network massive MIMO transmission over millimeter-wave and terahertz bands: mobility enhancement and blockage mitigation. IEEE Journal on Selected Areas in Communications, 38(12): 2946-2960, Dec. 2020.
[39]S. Li, Y. Liu, L. You, W. Wang, H. Duan, and X. Li. Covariance matrix reconstruction for DOA estimation in hybrid massive MIMO systems. IEEE Wireless Communications Letters, 9(8): 1196-1200, Aug. 2020.
[40]B. Jiang, B. Ren, Y. Huang, T. Chen, L. You, and W. Wang. Energy efficiency and spectral efficiency tradeoff in massive MIMO multicast transmission with statistical CSI. Entropy, 22(9), Sep. 2020.
[41]B. Jiang, L. Qu, Y. Huang, Y. Zheng, L. You, and W. Wang. Energy efficiency optimization in massive MIMO secure multicast transmission. Entropy, 22(10), Oct. 2020.
[42]L. You, A. Liu, W. Wang, and X. Gao. Outage constrained robust multigroup multicast beamforming for multi-beam satellite communication systems. IEEE Wireless Communications Letters, 8(2): 352-355, Apr. 2019.
[43]W. Wang, Y. Tong, L. Li, A.-A. Lu, L. You, and X. Gao. Near optimal timing and frequency offset estimation for 5G integrated LEO satellite communication system. IEEE Access, 7: 113298-113310, Aug. 2019.
[44]W. Wang, Y. Huang, L. You, J. Xiong, J. Li, and X. Gao. Energy efficiency optimization for massive MIMO non-orthogonal unicast and multicast transmission with statistical CSI. Electronics, 8(8), Aug. 2019.
[45]Y. Li, W. Wang, J. Wang, and X. Gao. Fast-convolution multicarrier based frequency division multiple access. Science China - Information Sciences, 62(8), Aug. 2019.
[46]L. You, J. Xiong, K.-X. Li, W. Wang, and X. Gao. Non-orthogonal unicast and multicast transmission for massive MIMO with statistical channel state information. IEEE Access, 6: 66841-66849, Nov. 2018.
[47]L. You, W. Wang, and X. Gao. Energy-efficient multicast precoding for massive MIMO transmission with statistical CSI. Energies, 11(11), Nov. 2018.
[48]Y. Yang, W. Wang, and X. Gao. AMP Dual-turbo iterative detection and decoding for LDPC coded multibeam MSC uplink. China Communications, 15(6): 178-186, Jun. 2018.
[49]Y. Yang, W. Wang, and X. Gao. Distributed RZF precoding for multiple-beam MSC downlink. IEEE Transactions on Aerospace and Electronic Systems, 54(2): 968-977, Apr. 2018.
[50]W. Wang, A. Liu, Q. Zhang, L. You, X. Gao, and G. Zheng. Robust multigroup multicast transmission for frame-based multi-beam satellite systems. IEEE Access, 6: 46074-46083, Aug. 2018.
[51]W. Wang, F.-C. Zheng, and M. Fitch. Design of delay-tolerant space-time codes with limited feedback. IEEE Transactions on Vehicular Technology, 64(2): 839-845, Feb. 2015.
[52]W. Wang, X. Gao, F.-C. Zheng, and W. Zhong. CP-OQAM-OFDM based SC-FDMA: adjustable user bandwidth and space-time coding. IEEE Transactions on Wireless Communications, 12(9): 4506-4517, Sep. 2013.
[53]W. Wang, X. Gao, X. Wu, X. You, C. Zhao, and K.-K. Wong. Dual-turbo receiver architecture for turbo coded MIMO-OFDM systems. Science China - Information Sciences, 55(2): 384-395, 2012.
[54]W. Wang, F.-C. Zheng, A. Burr, and M. Fitch. Design of delay-tolerant linear dispersion codes. IEEE Transactions on Communications, 60(9): 2560-2570, Jul. 2012.
[55]W. Wang, S. Jin, and F.-C. Zheng. Maximin SNR beamforming strategies for two-way relay channels. IEEE Communications Letters, 16(7): 1006-1009, Jul. 2012.
[56]W. Wang, X. Gao, X. Wu, X. You, C. Zhao, and K.-K. Wong. Dual-turbo receiver architecture for turbo coded MIMO-OFDM systems. Science China Information Sciences, 55(2): 384-395, 2012.
[57]X. Liang, S. Jin, W. Wang, X. Gao, and K.-K. Wong. Outage probability of amplify-and-forward two-way relay interference-limited systems. IEEE Transactions on Vehicular Technology, 61(7): 3038-3049, Sep. 2012.
[58]X. Gao, W. Wang, X.-G. Xia, E. K. S. Au, and X. You. Cyclic prefixed OQAM-OFDM and its application to single-carrier FDMA. IEEE Transactions on Communications, 59(5): 1467-1480, May 2011.
[59]W. Wang, S. Jin, X. Gao, K.-K. Wong, and M. R. McKay. Power allocation strategies for distributed space-time codes in two-way relay networks. IEEE Transactions on Signal Processing, 58(10): 5331-5339, Oct. 2010.